THE FUTURE OF WHOLE BLOOD

USES FOR WHOLE BLOOD IN PEDIATRICS AND NON-TRAUMA CASES

Christine Leeper, MD MS
Assistant Professor of Surgery & Critical Care Medicine
University of Pittsburgh

PEDIATRIC TRAUMA

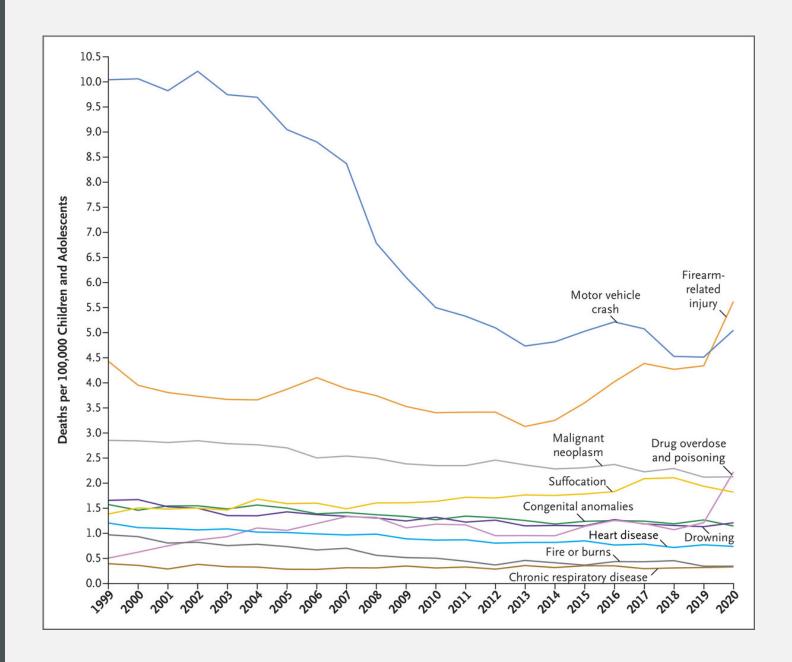
OUTCOMES FOR CHILDREN WITH MAJOR HEMORRHAGE

- Bleeding is the leading cause of preventable death in children
- 2000 preventable deaths annually in the US due to traumatic bleeding
- 28-day mortality rates in injured children with life threatening hemorrhage (36-50%) are approximately twice that of adults (21-24%)

^{1.} Kwon AM. Eur J Trauma Emerg Surg. 2014;40(3):279-85.

^{2.} Davis JS. J Trauma Acute Care Surg. 2014;77(2):213-8.

^{3.} Fox N. Journal of Emergency Medicine & Critical Care. 2018;4(1):4.


^{4.} Leonard JC. 2021;49(11):1943-54.

^{5.} Holcomb JB. JAMA Surg. 2013;148(2):127-36.

^{6.} Holcomb JB. Jama. 2015;313(5):471-82.

UNDERSTANDING PEDIATRIC TRAUMA IS AN URGENT PRIORITY

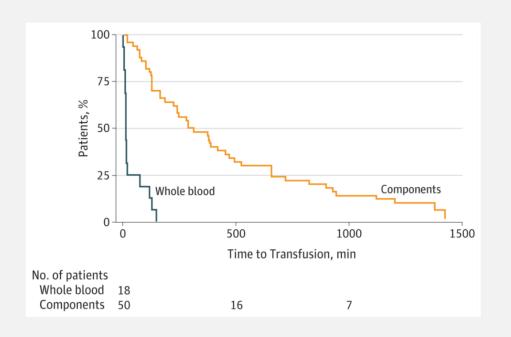
Leading Causes of Death among Children and Adolescents in the United States, 1999 through 2020. JE Goldstick et al. N Engl J Med 2022;386:1955-1956.

LTOWB IN CHILDREN: 2016 - PRESENT

- Increasing number of centers in the US use LTOWB for injured children
 - At least 15 pediatric trauma centers have a LTOWB program
 - Plus adult centers that use LTOWB for adolescents
- More with programs in development or with interest
- Increasing data in children that show:
 - Feasibility
 - Safety
 - Efficiency
 - Effectiveness

SAFETY

- No major transfusion reactions
- No increase in organ failure
- No increase in hospital complications
 - AKI
 - Sepsis
 - ARDS
 - Thromboembolism
- No increase in hemolysis


SAFETY

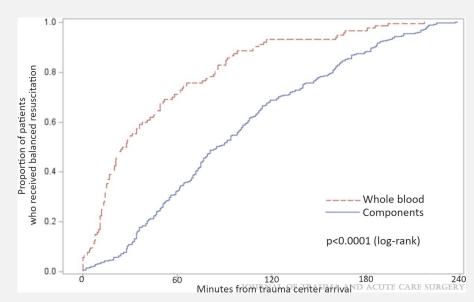
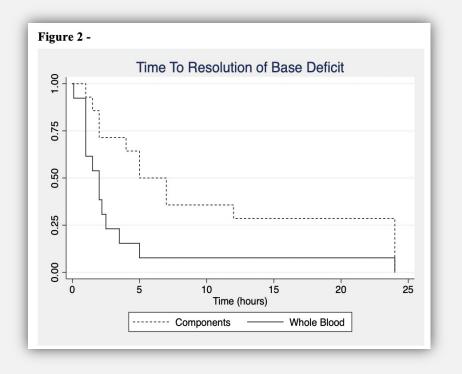
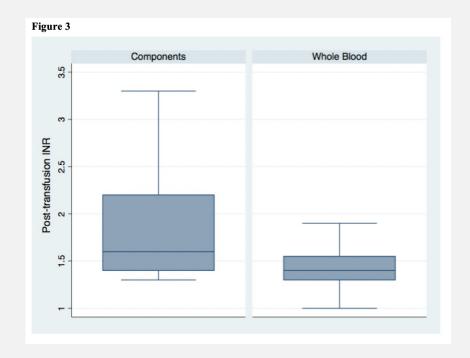

- Across a Range of Product Characteristics
 - Rh positive and negative
 - Leukocyte reduced and Non Leukocyte reduced
 - Titer <1:50 < 1:200
- Vulnerable populations
 - Youngest age
 - Weight < 20kg

TABLE 4. Comparison of Laboratory Indicators of Hem	olysis
Among the Two Groups	

	LTOWB, n = 73	COMP, n = 91	p
24-h Creatinine	0.97 (0.82, 1.21)	0.76 (0.57, 1.01)	<0.001
24-h Potassium	3.9 (3.7, 4.2)	3.9 (3.6, 4.2)	0.628
24-h Total bilirubin	0.8 (0.5, 1.3)	0.6 (0.4, 1.0)	0.227
24-hr LDH	405 (304, 773)	436 (360, 669)	0.924
24-h Haptoglobin	56 (36, 64)	27 (12, 62)	0.276
24-h PaO2/FIO2	390 (260, 490)	397 (217, 526)	0.526
48-h Creatinine	0.76 (0.64, 1.02)	0.62 (0.38, 0.87)	0.016
48-h Potassium	3.8 (3.6, 4.2)	3.9 (3.6, 4.2)	0.785
48-h Total bilirubin	0.9 (0.6, 1.4)	0.9 (0.6, 1.3)	0.977
48-h LDH	385 (311, 586)	355 (314, 436)	0.483
48-h Haptoglobin	67 (58, 83)	93 (62, 167)	0.394
48-h PaO2/FIO2	359 (247, 472)	382 (320, 465)	0.158
72-h Creatinine	0.65 (0.54, 0.94)	0.58 (0.37, 0.83)	0.122
72-h Potassium	3.9 (3.6, 4.1)	3.8 (3.6, 4.0)	0.441
72-h Total bilirubin	0.9 (0.6, 1.7)	0.6 (0.4, 1.3)	0.180
72-h LDH	321 (217, 447)	408 (234, 570)	0.530
72-h Haptoglobin	124 (52, 191)	103 (81, 116)	0.867
72-h PaO ₂ /FIO ₂	356 (258, 420)	355 (277, 477)	0.463

EFFICIENCY





Leeper et al JAMA Pediatrics 2018

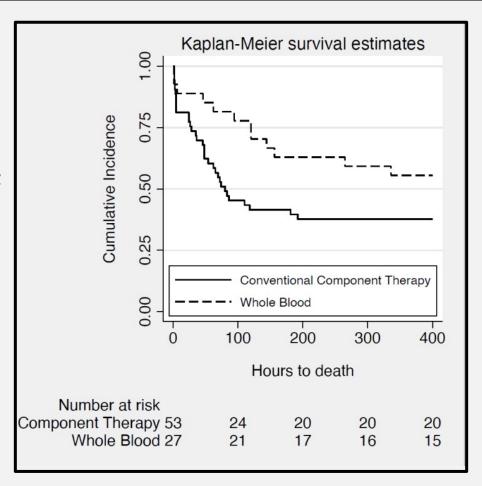
McLoughlin et al JTACS 2024

MITIGATING SHOCK AND COAGULOPATHY

PRODUCT TRANSFUSION VOLUME

- TQIP database
- In LTOWB group as compared to CT group:
 - Less plasma and platelet
 - Less volume overall

	CT (n = 270)	WB-CT (n = 135)
4-h Transfusions, median (IQR), mL/kg		
PRBC	31 (22–57)	19 (11-31)
Plasma	12 (9–31)	9 (0-21)
Platelets	4 (4–10)	0 (0-6]
WB	<u> </u>	13 (9–20)
Total blood products	48 (33–95)	35 (22–73)
24-h Transfusions, median (IQR), mL/kg		
PRBC	36 (25–71)	22 (15–53)
Plasma	17 (11–46)	11 (0-25)
Platelets	6 (4–13)	0 (0-9)
WB		14 (10-23)
Total blood products	53 (36–119)	39 (24-97)

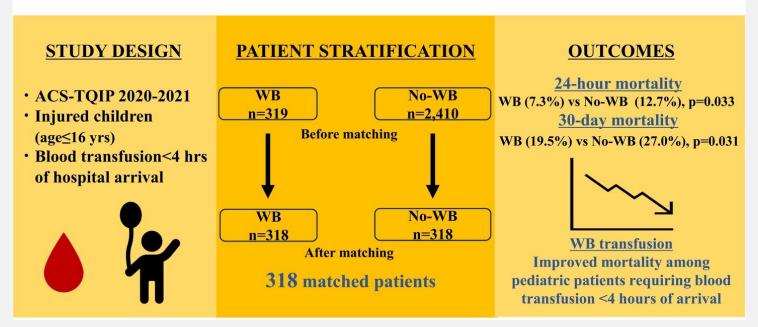

PRODUCT VOLUME & DONOR EXPOSURE

Transfusion details & outcomes				
Time to balanced resuscitation, minutes	72 (34-119)	87 (50-141)	28 (13-66)	<0.000
Number of transfusion exposures in first four hours	3.70 (2.05)	3.89 (1.79)	3.21 (2.54)	0.01
Total transfused blood product volume in first four hours, mL/kg	75 (39-131)	85 (46-126)	50 (20-133)	0.01

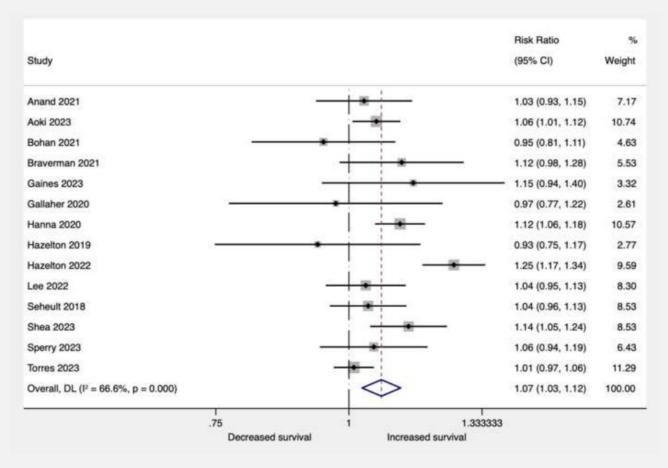
- TQIP database 2017-2019
- Age <12 years, transfusion within 4 hours
- 390 patients (109 LTOWB, 281 CT)
- Lower total product volumes
- LTOWB cohort → fewer blood product units (~donor exposures)

Children receiving massive transfusion:

- 72 hours (AOR 0.23; p=0.009)
- 28 days (AOR 0.41; P 0.02)



- 76 LTOWB vs 91 CT
- Median age 14, ISS 26
- After adjusting for inverse probability of treatment weights, LTOWB was associated with improved survival


TABLE 6. Inverse Probabil	ty Weighted Analysis for 30-c	Survival t
----------------------------------	-------------------------------	------------

	OR	95% CI	p
Whole blood group	2.48	1.16-5.47	0.02
Age, per year	1.004	1.0001 - 1.0006	0.003
Male sex	0.46	0.20-1.04	0.07
ISS, per point	0.93	0.89-0.96	< 0.001
Scene SBP, per mm Hg	1.00	0.99-1.01	0.93
Arrival lactate, per mmol/L	0.76	0.67-0.84	< 0.001

Association Between Whole Blood Transfusion and Mortality Among Injured Pediatric Patients

- Meta-analysis
- Combines pediatric/adolescent/adult cohorts
- 14 studies reported early mortality and 22 studies reported late mortality
- Compared to CT, LTOWB was associated with improved:
 - 24-hour survival (RR [95% CI] = 1.07 [1.03-1.12])
 - Late survival (RR [95% CI] = 1.05 [1.01-1.09])

WHOLE BLOOD:TOTAL BLOOD PRODUCT RATIO IMPACTS SURVIVAL IN INJURED CHILDREN

Single-center observational study

Pediatric recipients of low titer group O whole blood

Calculated ratio:

<u>Whole Blood</u>

Total Transfusion Volume

95 severely injured children

LTOWB comprised 59% (33-100) of total blood product resuscitation Adjusted for age, sex, mechanism of injury, injury severity score, shock index, and GCS score

Higher WB:TTV ratio independently associated with increased survival

38% decrease in-hospital mortality for each 10% increase in the proportion of LTOWB (p<0.001)

BARRIERS

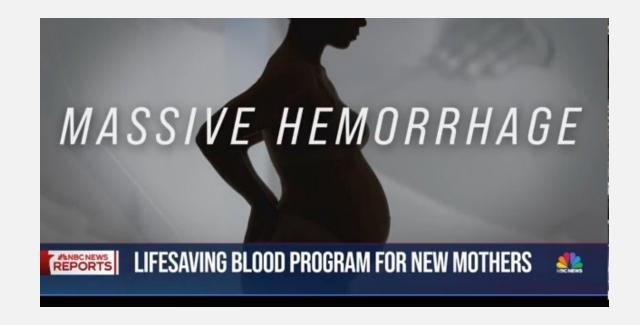
- Availability: robust blood supply
- Mature system with the means to recycle/offload products near expiration
- Lack of standard guideline, practice variation
- Buy in from pediatric providers
- Concerns about waste, cost, Rh exposure...
- Do the current data support a practice change?

MATIC-2

Domains

- 1) Blood product domain = LTOWB vs CT
- 2) Hemostatic Adjunct domain = TXA vs Placebo
- 20-24 US high volume pediatric trauma centers
- 1000 children
- 5-10 years
- Funded by the Biomedical Advanced Research and Development Authority (BARDA)

ADULT NON-TRAUMA


LTOWB IN NON-TRAUMATIC BLEEDING ETIOLOGIES

- LTOWB is part of the massive transfusion protocol (MTP) for any patient with life-threatening bleeding at an increasing number of US centers
- Not well studied: few case reports and case series
- Common etiologies: Gl, obstetric hemorrhage^{1,2}

- I. Smith et al, American Surgeon, 2023
- 2. Nowadly et al, Military Medicine 2022

LTOWB PROGRAMS FOR OBSTETRIC HEMORRHAGE

- Postpartum hemorrhage has been a leading cause of worldwide maternal death (25%), this rate is increasing
- The International Federation of Gynecology and Obstetrics recommends that whole blood can be used in cases of massive hemorrhage
- LTOWB programs specifically for obstetric hemorrhage have been described: University Hospital in San Antonio, TX and Intermountain Health in Utah

OBSTETRIC HEMORRHAGE

Characteristics Median Range		
Age (y)	30.8	19–57
Gestational age (wk)	36.5	4-42.4 ^a
Length of hospital stay	4	1–4
Indications	N	%
Uterine atony	8	32
Coagulopathy/DIC	5	20
Accreta/percreta/increta	3	12
Amniotic fluid/pulmonary embolism	3	12
Uterine rupture	2	8
Ruptured ectopic pregnancy ^a	2	8
Outcomes	N	%
ICU admission	19	76
Hysterectomy	4	16
Cardiac arrest	4	16
ECMO support	1	4
Maternal death	2	8
Neonatal death	5	20
Transfusions	Median	Range
Estimated blood loss (mL)	3,250	800-12,000
Units of LTOWB transfused	3	1–8
Age of the LTOWB at transfusion ^b	10	(8-13) IQR
Units of components transfused	7	2-44

Factor	Whole blood (n = 16)	Component ($n = 18$)	p Value
Admission hemoglobin (g/dl)	10.5 ± 1.5	10.7 ± 1.3	.626ª
Operative time (min)	319.6 ± 161.1	230.7 ± 128.5	.08ª
Urinary stent placement	13 (81)	11 (61)	.27 ^c
Uterine artery embolization	8 (50)	3 (17)	.076 ^c
EBL (ml)	2600 (2000, 4750)	3000 (1875, 5250)	.90 ^b
Component transfusion			
Whole blood	3.5 (1.3, 4)	_	-
Red blood cells	0 (0, 2)	4.5 (2, 6.8)	.003 ^ь
Platelets	0 (0, 0.8)	0 (0, 1)	.89 ^b
Fresh frozen plasma	0 (0, 3.3)	3 (0, 5)	.001 ^b
Covonrecipitate*	0 (0 0)	0 (0 0)	18 ^b
Volume transfused (ml)**	2607	4683	.03ª

Carr et al, American Journal of Perinatology Reports 2024 Munoz et al Journal of Maternal Fetal & Neonatal Medicine 2022

PEDIATRIC NON-TRAUMA

PEDIATRIC NON-TRAUMA

Descriptive cohort of n=16 pediatric recipients of LTOWB during massive transfusion

Age (years)	13 (8-16)
Sex	
Male	8 (50)
Female	8 (50)
Etiology of bleed	
Medical	4(25)
GI	5(31)
Cardiorespiratory	` /
ENT	1(6)
Gyne	1(6)
Surgical	2(10)
Cardiothoracic	3(19)
Vascular	1(6)
Abdominal Transplant	1(6)
Clinical outcomes	
Mortality	7(41)
ICU days	4(.25-35)
Hospital days	5 (1.25-47.5)

^{*}Unpublished data: Feeney et al, in press

NEONATAL NON-TRAUMA

 Carr et al, American Journal of Perinatology Reports 2024

Descriptive cohort of n=5 neonatal recipients of LTOWB during massive transfusion

Neonatal patients transfused with whole blood ($n = 5$)		
Characteristics	Median	Range
Gestational age (wk)	26.3	25.1–36.1
Apgar (5 min)	5	2-8
Lowest pH	6.91	6.64-7.04
Maximum total bilirubin (mg/dL)	7	2.9-9.5
Indications	N	%
Fetomaternal hemorrhage	2	40
TRAP (donor)	1	20
Intestinal perforation/ hemorrhagic shock	1	20
Maternal motor vehicle accident	1	20
Outcomes	N	%
No or grade 1 IVH	3	60
IVH grade 2	1	20
IVH grade 3 or 4	0	0
Diagnosis of HIE (moderate/severe)	1	20
Died (redirection of care)	1	20
Transfusions	Median	Range
Volume of LTOWB transfused (mL/kg)	20	10-40
Age of the LTOWB at transfusion ^a	6	(4.5–8) IQR
Number of components transfused	2	1–6

WHOLE BLOOD VERSUS RED CELL CONCENTRATES FOR CHILDREN WITH SEVERE ANAEMIA: A SECONDARY ANALYSIS OF THE TRANSFUSION AND TREATMENT OF AFRICAN CHILDREN (TRACT) TRIAL

- Inclusion: children admitted to hospital with severe uncomplicated anemia
- n= 3188 children, median age 37 months (IQR 18-64)
- Whole blood was the first pack provided for 1632 (41%) of 3992 transfusions
- Whole blood cohort had higher 8h hemoglobin, less likely to require additional transfusion, and shorter length of stay
- No difference in mortality or readmission

- Identify optimal resuscitation strategy in injured children
- Identify optimal resuscitation strategy in nontraumatic bleeding
- Diverse etiologies of bleeding; different patient phenotype → unique strategy to treat?

THANK YOU